第71章 异象破局(2 / 2)

一位擅长控制理论和系统动力学的数学家说道:“我们可以把飞船的能量控制系统看作一个动态系统,这种未知力量的干扰就是系统中的扰动项。运用控制理论中的鲁棒控制方法,设计一种能够抵抗这种干扰的控制策略。通过调整能量控制系统的参数,使得即使存在未知力量的干扰,也能按照预定参数释放能量。”

“具体该怎么设计鲁棒控制策略呢?”能量系统工程师问道。

“首先,建立飞船能量控制系统的精确数学模型,包括能量产生、传输和释放的各个环节。然后,分析未知力量干扰的特性,比如干扰的频率范围、强度变化等。根据这些信息,设计鲁棒控制器,通过调整控制器的参数,使能量控制系统对干扰具有更强的鲁棒性。”数学家详细解释道。

于是,数学家们开始建立飞船能量控制系统的数学模型,并对未知力量干扰进行分析。经过一系列复杂的计算和设计,鲁棒控制策略终于完成。

“鲁棒控制策略设计完成,按照这个策略调整能量控制系统,应该能够抵抗未知力量的干扰,实现按照预定参数释放能量。”数学家说道。

能量系统工程师迅速按照鲁棒控制策略对能量控制系统进行调整。调整完成后,飞船再次尝试按照光影图案信息释放能量。

“能量释放操作开始,目前能量输出稳定,没有受到未知力量的明显干扰。”能量系统工程师汇报说。

随着能量按照特定的顺序和强度在“节点”位置释放,周围的空间发生了剧烈的变化。原本神秘的光影图案逐渐消散,取而代之的是一个巨大的、散发着奇异光芒的结构出现在飞船前方。

“林翀,前方出现了一个未知的大型结构,我们的探测器无法穿透它,不知道内部是什么情况。但从外部特征来看,它似乎蕴含着巨大的能量,而且与之前遇到的各种现象都有着千丝万缕的联系。”飞船的探测员说道。

林翀看着前方的巨大结构,对数学家们说:“数学家们,这个未知结构是我们探索的关键。我们要从数学上分析它的结构特征、能量分布,想办法搞清楚如何与它交互,或者至少了解它的一些基本信息。大家有什么思路?”

一位擅长几何分析和能量建模的数学家说道:“我们可以运用分形几何和能量场建模的方法来研究这个结构。分形几何可以描述复杂结构的自相似特征,通过分析这个结构的外观,看是否存在分形特性,以此了解它的构建规律。同时,利用能量场建模技术,根据探测器收集到的能量数据,构建它的能量分布模型,分析能量的集中区域和流动方向。”

“那如何根据这些分析与它进行交互呢?”飞船的舰长问道。

“通过分形几何分析,如果能找到它的分形维度和特征尺度,也许可以找到一些关键的交互点。再结合能量分布模型,了解在这些点上的能量特性,尝试通过调整飞船的能量输出,与它建立某种形式的‘对话’或者找到进入它内部的方法。”数学家解释道。

于是,数学家们根据探测器收集到的数据,运用分形几何和能量场建模技术,对这个未知结构展开研究。

“经过分形几何分析,我们发现这个结构具有明显的分形特征,分形维度为[具体数值]。这意味着它的结构在不同尺度上具有自相似性。通过进一步分析,我们找到了一些可能的关键交互点。”研究分形几何的数学家说道。

同时,负责能量场建模的团队也有了成果。

“能量分布模型显示,能量主要集中在结构的中心区域,并且存在一种周期性的能量波动。能量流动方向似乎是从边缘向中心汇聚。我们可以根据这些信息,调整飞船在关键交互点的能量输出,尝试与它建立联系。”研究能量场建模的数学家展示着模型说道。

飞船按照数学家们的建议,调整能量输出,在关键交互点与未知结构进行交互。然而,交互过程并不顺利,未知结构对飞船的能量输出没有明显反应。

“林翀,按照目前的交互方式,未知结构没有反应。我们可能需要重新调整策略。”飞船的舰长说道。

林翀看向数学家们,“数学家们,看来我们的分析还不够准确。大家再仔细研究研究,是不是在分形几何或者能量分布的分析上存在遗漏,导致交互方式不对?”

擅长分形几何的数学家重新审视分析过程,说道:“有可能我们对分形特征的分析还不够深入。虽然找到了分形维度和关键交互点,但可能忽略了一些细微的结构变化。我们可以运用多重分形分析方法,进一步研究这个结构的复杂分形特性,也许能找到新的线索。”

同时,研究能量场建模的数学家也说道:“能量分布模型可能也需要进一步优化。我们可以考虑加入一些动态因素,比如能量波动的相位变化,以及结构内部可能存在的能量反馈机制,重新构建能量分布模型,看看能否找到更有效的交互方式。”

于是,数学家们再次投入研究,运用多重分形分析方法深入研究未知结构的分形特性,同时考虑动态因素优化能量分布模型。经过一番努力,他们有了新的发现。

“通过多重分形分析,我们发现了一些隐藏在分形结构中的微观特征,这些特征与能量波动的相位变化存在关联。结合优化后的能量分布模型,我们可以调整交互策略,在关键交互点按照特定的能量相位和强度进行输出,也许能引起未知结构的反应。”数学家们兴奋地说道。

飞船再次调整能量输出策略,在关键交互点按照新的参数进行能量输出。这一次,未知结构终于有了反应,它表面的光芒开始闪烁,并且出现了一些细微的结构变化。

“有反应了!未知结构开始发生变化,继续按照这个策略进行能量输出。”林翀喊道。

随着能量的持续输出,未知结构的变化越来越明显,它似乎在逐渐打开,露出了内部的一些结构。

“林翀,未知结构内部似乎有一些复杂的装置和通道,但我们还不清楚它们的功能和用途。我们需要进一步分析,才能继续深入探索。”飞船的探测员说道。

林翀点点头,对数学家们说:“数学家们,又到关键时刻了。我们要从数学上分析这些内部结构的功能和潜在的交互方式,为下一步探索提供指导。大家加油!”

一位擅长拓扑分析和功能建模的数学家说道:“我们可以运用拓扑分析的方法,研究这些内部结构的连通性和空间关系,构建它们的拓扑模型。同时,结合已知的各种功能模块的数学描述,尝试对这些结构进行功能建模,推测它们的用途。通过这两种方法的结合,找到与内部结构进一步交互的方法。”

于是,数学家们根据探测器获取的未知结构内部的图像和数据,运用拓扑分析和功能建模的方法展开研究。在这片神秘区域,探索团队凭借数学的智慧,一步一步揭开未知结构的神秘面纱,然而前方等待他们的又会是什么样的挑战呢?一切都充满了未知与期待,他们能否成功解开这片区域的核心秘密,继续在宇宙探索的征程中前行呢?